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We present a method to obtain the first-order temporal correlation function, g(1)(τ ), of the light scattered by an
assembly of pointlike quantum scatterers, or equivalently its spectral power distribution. This method is based on
the mirror-assisted backscattering interferometric setup. The contrast of its angular fringes was already linked to
the convolution of g(1)(τ ) for different Rabi frequencies taking into account the incoming spatial intensity profile
of the probe beam, but we show here that by simply adding a half wave plate to the interferometer in a specific
configuration, the fringe contrast becomes g(1)(τ ) of the light scattered by atoms, which are now all subjected
to the same laser intensity. This method has direct application to obtaining the saturated spectrum of quantum
systems. We discuss some nontrivial aspects of this interferometric setup and propose an analogy with a double
Mach-Zehnder interferometer.
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I. INTRODUCTION

When a two-level quantum system with a nonzero dipolar
matrix element is excited by an incoming electromagnetic
field, it scatters radiation, and the spectrum of that radiation
changes qualitatively between the so-called linear regime,
when the average population of the excited level is much
smaller than one, to the saturated regime, when the excited
population becomes non-negligible and saturates, asymptoti-
cally reaching a maximum value of 1/2. In the linear regime,
the scattered light presents spectral properties identical to
the incoming electromagnetic radiation [1]. In the saturated
regime, on the other hand, the power spectrum of the scattered
light broadens and acquires, for incident monochromatic light,
the typical structure of three maxima known as the Mollow
triplet [2]. These maxima can be linked to four possible tran-
sitions, two of them of equal frequency, between energy levels
in the dressed-state picture of the atom interacting with the
incoming electromagnetic field [3]. This nonlinear effect has
received recent interest due to the nonclassical correlations
between photons emitted in different peaks of the spectrum
[3–5] and the time ordering of photons emitted in differ-
ent sidebands for nonresonant excitation [6], which could
be exploited as heralded sources of single photons [7,8] and
nonclassical light.

The first experimental verification of the saturated spec-
trum of two-level systems was made with atomic beams
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[9–12]. In those first experiments, the power spectrum
of the light scattered by atoms was directly obtained
through the use of a Fabry-Perot cavity as a spectral filter,
detecting the scattered light power as a function of the fre-
quency. Further measurements made with single ions [13],
single-dye molecules [14], and single quantum dots [4,15,16]
applied the same technique to the much fainter signal of those
single emitters. For quantum dots [15], it was verified that
the presence of additional dephasing of the coherences due
to the coupling to phonons of the solid state environment
makes the scattered power spectrum different from the Mol-
low result.

The first-order temporal correlation function g(1)(τ ) is de-
fined as follows:

g(1)(τ ) = 〈E �(t )E (t + τ )〉
〈I (t )〉 , (1)

with 〈·〉 corresponding to the averaging over the time t , and
I (t ) = E �(t )E (t ) the intensity associated with the field E (t ).
This function is linked to the light spectrum through the
Wiener-Khintchine theorem [17], which states that the power
spectrum of the light is proportional to the Fourier transform
of g(1)(τ ). This means that the information carried by the
power spectrum in the frequency domain is equivalent to the
information carried by g(1)(τ ) in the temporal domain, and
measuring g(1)(τ ) can be considered equivalent to measuring
the light power spectrum for a verification of the Mollow
theory. The first-order correlation function must be measured
through an interferometric measurement, for example, with a
Michelson interferometer in which the delay τ is due to the
path difference between the two arms, with a self-heterodyne
measurement [18], or with a heterodyne technique where a
laser beam, usually denoted as local oscillator, is superim-
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FIG. 1. (a) Schematic setup of the interferometer. A cloud of atoms (red circles in front of the mirror) is placed at a distance h in front of a
mirror. An incoming laser beam (continuous, light blue area and light blue arrows) impinges on the atoms and is reflected by the mirror with
a reflection angle θ0, passing again through the cloud on its way back. The light scattered by the atoms (darker blue arrows) and detected in
the far field with an angle θ with respect to the normal to the mirror is the superposition of the light directly scattered in this direction and the
light first scattered in the mirror direction and then reflected back to the detector. The scattered light reflected by the mirror can be interpreted
as emitted by the image of the atoms (red circles behind the mirror). (b) Physical implementation of the setup. A real mirror is conjugated
arbitrarily close to the atoms by a system of converging lenses of equal focal length f and separated by 2 f ; in this case, h represents the
distance of the virtual mirror to the atoms. This scheme allows one to separate the incoming and reflected light beams between the two lenses
and to insert a half wave plate only on the incoming beam

posed to the light under investigation. This last technique
was used to obtain the absolute value of g(1)(τ ) of the light
scattered by cold atoms in the linear regime [19], in which the
light is mainly elastically scattered, as well as in the saturated
regime, where the light is inelastically scattered, either out of
resonance [20] or at resonance [21].

In this article, we report on a way to obtain g(1)(τ ) for
the light scattered by an assembly of quantum scatterers.
This method is based on an interferometer called the mirror-
assisted backscattering (MBS) setup [22–24]. In this scheme,
described in more detail in the next section and depicted in
Fig. 1(a), the scatterers are placed in front of a mirror, such
that they are excited by an incident laser and its reflection
on the mirror. Accordingly, the scattered light, observed in
the far field, is a superposition of the light scattered directly
at the observation direction and the scattered light reflected
by the mirror to the observation direction, leading to a fringe
pattern in the far field. For scattering in the saturated regime,
the fringe contrast was shown to be a function of the saturated
spectrum emitted by the atoms [25]. However, in the original
setup, this function was a complicated convolution of the
saturated spectra emitted by all atoms subject to an intensity
spatial modulation caused by the interference of the incoming
and reflected excitation beams. In this paper we show that
with a simple polarization rotation of the light that goes from
the scatterers to the mirror, we can obtain interference fringes
whose contrast is directly the value of the function g(1)(τ )
of the light scattered by the atoms illuminated by twice the
incident laser intensity, with τ the time needed for the light
to travel from the scatterers to the mirror and back. This result
has applications in the spectral characterization of any class of
identical quantum emitters in the saturated regime, including
atoms, ions, molecules, and assemblies of identical quantum
dots. The spectral characterization allows one, for example,
to identify modifications in the electromagnetic modes of the

vacuum [26,27], to characterize the incident light such as to
its intensity and saturation parameter, and to characterize the
broadening mechanisms of the transition at work for the scat-
terers within their environment [15]. This result also extends
the applicability of the MBS setup to the characterization of
the coherence of the light scattered by matter; for its previous
use in the characterization of the coherence of light scattered
by a hot vapor, see [28], where it allowed identifying addi-
tional interference rings associated with the Raman processes
in the multilevel species used for the experiment.

The paper is organized as follows. In Sec. II we present
the principle of the MBS interferometer in which a half wave
plate is added. The total emission profile of a single scatterer
in this setup is then calculated in Sec. III, and of a spatially
extended ensemble of identical scatterers in Sec. IV. We show
in this latter section that, for a specific position of the half
wave plate, one can measure the first-order temporal correla-
tion function of the atoms driven by twice the incident laser
intensity. Finally, we summarize our results in Sec. V.

II. MIRROR-ASSISTED BACKSCATTERING SETUP
IN THE PRESENCE OF A HALF WAVE PLATE

A. General setup

The principle of the MBS interferometer is sketched in
Fig. 1(a) and has been detailed in Refs. [22,24]. Briefly,
monochromatic coherent light is sent on the scatterers, with
plane wavefront at the scatterers positions, and then reflected
by a mirror before impinging again on the scatterers. The
incident wave vector is defined as

k0 = k(0,− sin θ0, cos θ0) (2)

with θ0 the incident angle on the mirror, k = 2π/λ with λ the
laser wavelength, and the z direction determines the normal
incidence direction at the mirror. The reflected wave vector
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corresponds to k′
0 = k(0,− sin θ0,− cos θ0). The angular pro-

file of the light scattered from the incident and reflected beams
is detected in the far field at an angle θ with the normal
to the mirror and azimuthal angle φ, thus in the direction
(sin θ cos φ, sin θ sin φ,− cos θ ). Due to the presence of the
mirror, the scattered light detected in the far field is also the
superposition of the light directly emitted in the direction of
the detector with wave vector

k = k(sin θ cos φ, sin θ sin φ,− cos θ ), (3)

plus the light emitted with wave vector k′ =
k(sin θ cos φ, sin θ sin φ, cos θ ) and reflected back to the
detection direction.

This configuration of light excitation produces angular in-
terference fringes in the scattered light at directions θ close
to θ0 [24,25]. We consider that k0, k′

0, k, and k′ are close to
the normal direction of the mirror. This particular choice of
small incidence angles is always made at experimental imple-
mentations of the setup as a compromise between removing
the spurious light coming from the incident laser beam on
the detector and the period of the angular fringes, which is
inversely proportional to θ0 [24] and must be larger than the
detection resolution.

The realized experimental setup is presented in Fig. 1(b).
For practical reasons, the mirror is placed after two lenses of
equal focal length f and separated by 2 f . This creates a virtual
image of the real mirror (called the virtual mirror) at a distance
2 f − d from the first lens, with d the distance between the real
mirror and the last lens. This particular setup allows placing
some optics between the two lenses that acts only once on the
incoming light from the scatterers to the mirror. In this paper,
we consider the case where we add a half wave plate to control
its polarization, as detailed in the next section.

B. Control of the linear polarization

The polarization of the incident beam is linear and parallel
to the x direction, determined by a unitary vector that we
call εx. We now consider that the polarization of the incident
beam after reflection is still linear, but rotated compared to
the incident one. This is done by adding a half wave plate
after the scattering medium and before the mirror, as shown
in Fig. 1(b). The linear polarization after the half wave plate
is denoted as ε1:

ε1 = cos 2γ εx + sin 2γ εy, (4)

with γ the angle between the proper axis of the wave plate
and εx. As said before, we consider that θ, θ0 � 1 and thus
ε1 · εz � 0. We also write in this limit the action of the wave
plate on the polarization, defined by the linear transformation:

L[εx] = ε1, (5)

L[ε1] = εx. (6)

The total complex electric field seen by a scatterer at po-
sition r = (x, y, z) [assuming r = (0, 0, 0) at the center of the
mirror, as depicted in Fig. 1(a)], composed of the incoming
plane wave plus the reflected one with rotated polarization, is

given by

El (r) = E0[eik(cos θ0z−sin θ0y)εx + e−ik(cos θ0z+sin θ0y)ε1]. (7)

We assume that the amplitudes of the incoming and reflected
beams are the same. One can note that depending on the wave
plate orientation, one goes from interference with full contrast
between the incoming and reflected beam when εx · ε1 = 1 to
no interference when εx · ε1 = 0. We can also rewrite this total
electric field through its amplitude and direction:

El (r) = El (z)εl , (8)

with

El (z) = E0

√
2[1 + cos 2γ cos (2k cos θ0z)], (9)

εl = eik(cos θ0z−sin θ0y) e−2ik cos θ0zε1 + εx√
2[1 + cos 2γ cos (2k cos θ0z)]

. (10)

In what follows, we consider identical quantum point scat-
terers with a narrow dipolar transition. This is the case, for
example, for atoms of the same species with a J = 0 → J = 1
dipolar transition, from a nondegenerated ground state |g〉 to
an excited state of energy h̄ω0 with respect to the ground state.
This excited state is composed of three degenerate sublevels
|ex〉, |ey〉, and |ez〉, to which the atom can be excited by light
linearly polarized, respectively, in the directions x, y, and z.
We call 
 the natural width of the transition, originated from
the electric dipolar coupling between the atomic transition and
the vacuum modes of the quantized electromagnetic radiation,
and we consider that the incoming light is resonant: that is, the
detuning � = ω − ω0 between the frequency of the incoming
laser light ω = ck and the natural frequency ω0 of the transi-
tion satisfies � = 0.

III. SINGLE SCATTERER EMISSION PROFILE

Let us first calculate the emission profile of only one scat-
terer at position r. We define the lowering (raising) operators
for this atom in the referential rotating with the incoming laser
light, σ̂α = eiωt |g〉〈eα| (σ̂ †

α = e−iωt |eα〉〈g|), with α ∈ {x, y, z},
such that the electric dipole operator d̂ of the atom is given by

d̂ = d
∑

α=x,y,z

(
e−iωt σ̂α + eiωt σ̂ †

α

)
εα (11)

= d (e−iωt σ̂ + eiωt σ̂†) = d̂(+) + d̂(−), (12)

with d the amplitude (taken as real without loss of generality,
since its phase can be included in the choice of a global
phase of each excited level) of the electric dipolar moment
of the atomic transition, d = 〈g|d̂|eα〉 for any α; εα an uni-
tary vector pointing in the α direction, with α ∈ {x, y, z}; the
vectorial lowering (raising) operator σ̂ = ∑

α=x,y,z σ̂αεα (σ̂† =∑
α=x,y,z σ̂ †

αεα); and the positive and negative frequency com-

ponents of the dipole operator, respectively, d̂(+) = d e−iωt σ̂

and d̂(−) = d eiωt σ̂†. For what follows, we place ourselves
in the the Heisenberg picture, with the raising and lowering
operators depending on time. We also indicate explicitly the
dependence of the atomic coherences on the incoming laser
field, σ̂α ≡ σ̂α (El (r), t ) for an atom at position r.
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A. Electric field emitted by a single scatterer

The positive frequency component of the electric field
operator of the light scattered by the atom at position r,
seen at position R and time t and emitted with wave vector
k = kR/R (with R = |R|), before any reflection by the mirror,
is expressed in the far field as [29]

Êd (r, R, t ) � k2

4πε0R
d̂(+)(El (r), tret) eik(R−r) (13)

= k2d

4πε0R
σ̂(El (r), tret) eik(R−r) e−iωt , (14)

with ε0 the vacuum permittivity, tret(R, r, t ) = t − k(R−r)
kc the

instant at which the light was emitted to be detected at time t
in position R, c the vacuum speed of light, and where we have
used the approximation θ, θ0 � 1 implying d̂(+) · k � 0.

The mirror also reflects the light emitted in direction k′
back to the direction k. Before reflection, the electric field
passes through the wave plate, suffering the linear transfor-
mation L, which acts on σ̂(El (r), tret ). The reflected scattered
electric field detected at point R can be written as follows:

Êr (r, R, t ) � k2d

4πε0R
L[σ̂(El (r), t ′

ret )] eik(R−r′ ) e−iωt , (15)

where r′ = (x, y,−z) is the position of the mirror image of the
atom at position r, and t ′

ret ≡ tret(R, r′, t ) = t − k(R−r′ )
kc − 2L

c
the retarded time for the reflected emission of the atom, which
also depends on L, the path length between the virtual and real
mirrors. We see that this reflected electric field depends on the
electric field at position r, as the scattered field is emitted by
the atom at position r, but it has a different spatial phase and
time delay with respect to the electric field directly emitted in
the wave vector k.

The total scattered electric field emitted by one atom at
r and detected at position R and time t is the sum of both
components:

Ê1(r, R, t ) = Êd (r, R, t ) + Êr (r, R, t ) (16)

= k2d

4πε0R
eik(R−r) e−iωt {σ̂(El (r), tret)

+ e2ik cos θz L[σ̂(El (r), t ′
ret)]}. (17)

The direction of the atomic dipole operator is in the same
direction as the incoming electric field seen by the atom
[1], such that we can write σ̂(El (r), tret) = σ̂ (El (z), tret) εl (r),
where the scalar operator σ̂ (E , t ) represents the rising opera-
tor of a two-level system at time t , subject to a scalar electric
field excitation of modulus E . We can thus write

Ê1(r, R, t ) = k2d

4πε0R
eik(R−r) e−iωt {σ̂ (El (z), tret)εl (r)

+ e2ik cos θz σ̂ (El (z), t ′
ret)L[εl (r)]} . (18)

B. Intensity emitted by a single scatterer

The intensity emitted by this atom, and detected at position
R and time t , is given by

I1(r, R, t ) = ε0c

2
〈Ê†

1(r, R, t ) Ê1(r, R, t )〉 (19)

= k4d2c

32π2ε0R2
{〈σ̂ †(El (z), tret)σ̂ (El (z), tret)〉ε†

l (r)

· εl (r) + 〈σ̂ †(El (z), t ′
ret)σ̂ (El (z), t ′

ret)〉L[ε†
l (r)]

·L[εl (r)] + e2ik cos θz〈σ̂ †(El (z), tret)σ̂ (El (z), t ′
ret)〉

× ε†
l (r) · L[εl (r)] + e−2ik cos θz〈σ̂ †(El (z), t ′

ret)

× σ̂ (El (z), tret)〉L[ε†
l (r)] · εl (r)}. (20)

According to Eqs. (5), (6), and (10), the polarization parts
become

L[εl (r)]

= eik(cos θ0z−sin θ0y) e−2ik cos θ0zεx + ε1√
2[1 + 1 cos 2γ cos (2k cos θ0z)]

,

(21)

ε†
l (r) · εl (r) = 1, (22)

L
[
ε†

l (r)
] · L[εl (r)] = 1, (23)

ε†
l (r) · L[εl (r)] = L

[
ε†

l (r)
] · εl (r)

= cos 2γ + cos (2k cos θ0z)

1 + cos 2γ cos (2k cos θ0z)
. (24)

We are interested in the intensity at a time t → ∞, that
is, the steady-state configuration, after all transients of the
atomic response to the incoming electric field have decayed
to zero. In this steady-state regime, the average values of
the product of coherences depend only on the relative time
between those coherences. For an excitation at resonance, this
can be expressed as [25]

〈σ̂ †(El (z), tret)σ̂ (El (z), tret)〉 = 〈σ̂ †(El (z), t ′
ret)σ̂ (El (z), t ′

ret)〉

= s(z)

2[1 + s(z)]
, (25)

〈σ̂ †(El (z), t ′
ret)σ̂ (El (z), tret)〉 = 〈σ̂ †(El (z), tret)σ̂ (El (z), t ′

ret)〉

= s(z)

2[1 + s(z)]
g̃(1)

z (τc) , (26)

with s(z) the saturation parameter at position z. The quantity
g̃(1)

z (τc) corresponds to the first-order temporal correlation
function of the electric field emitted by the atom at position
z from the virtual mirror, in the referential frame rotating with
the frequency of the incoming laser light, as a function of τc =
tret − t ′

ret = k · (r − r′)/kc + 2L/c = 2z cos θ/c + 2L/c:

g̃(1)
z (τc) = 1

1 + s(z)
+ 1

2

{
e−
τc/2 + s(z) − 1

s(z) + 1
cos [�M (z)τc]e−3
τc/4 + 


4�M (z)

5s(z) − 1

s(z) + 1
sin [�M (z)τc]e−3
τc/4

}
, (27)
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where �l (z) = dEl (z)/h̄ = 

√

s(z)/2 is the scalar, real Rabi
frequency, and �M (z) =

√
�2

l (z) − 
2/16. The first term in
the r.h.s. of Eq. (27) is independent of τ and represents the
correlations on the light coherently scattered [1], which have
same spectrum as the incoming monochromatic light, while

the other terms correspond to the correlations for the light
incoherently scattered, which present in the frequency domain
the typical broadened structure of three peaks known as the
Mollow triplet. The total intensity scattered by the atom in
steady state is finally given by

I1(k, r) = Ia
s(z)

1 + s(z)

[
1 + g̃(1)

z (τc)
cos 2γ + cos (2kz cos θ0)

1 + cos 2γ cos (2kz cos θ0)
cos (2kz cos θ )

]
, (28)

with Ia ≡ k4d2c
32π2ε0R2 .

C. Scattered intensity for parallel polarization

Let us take a look at this last expression in two extreme
cases, when the polarization of the light that went to the mirror
and back is parallel to the incident polarization or perpendicu-
lar. In the first one, the angle γ of the proper axis of the wave
plate with the direction εx is γ = 0. In this situation, the wave
plate does not affect the light polarization, which remains
fully linear and parallel to the εx direction. The incoming
and reflected laser beams with same polarization create an
intensity grating in space along z: Il (z) = 4E2

0 cos2(kz cos θ0),
as represented in Fig. 2(a). This modulates the Rabi frequency
seen by the atoms �l (z), the frequency �M (z), as well as the
saturation parameter s(z).

We call the intensity scattered by one atom at position z in
this configuration I1,‖ [25]:

I1,‖(k, r) = Ia
s(z)

1 + s(z)

[
1 + g̃(1)

z (τc) cos (2kz cos θ )
]
. (29)

The term cos(2kz cos θ ) comes from the interference between
the scattered light sent directly to the detector and the scat-
tered light reflected by the mirror, with 2kz cos θ the phase
difference between both paths. This leads to an angular inter-
ference pattern forming fringes with an angular period π/kzθ0

for θ � θ0 � 1. The contrast of the fringes, defined as the
amplitude peak to peak of the fringes divided by the mean
intensity, is given by

C1,‖ = 2
∣∣g̃(1)

z (τc)
∣∣. (30)

It depends on the delay τc and on the position of the atom z.
This contrast is plotted in Fig. 2(b) as a function of τc,

with θ � θ0 = 4.3◦ for different positions z. The incoming
plane wave has an intensity that corresponds to a saturation
parameter s0 = 2( dE0

h̄

)2 = 5. Each one of those curves corre-

sponds to twice the value of |g̃(1)
z (τc)| for the light scattered

by the atom at its position z. Their shape differs qualita-
tively, as expected, because the Rabi frequency varies with
the z position. The z = 0 case corresponds to the blue line
in Fig. 2(b). The incoming and reflected laser beams fully
interfere, leading to a saturation parameter 4s0 = 20 and thus
a Rabi frequency �l/
 � 3.16 and �M/
 � 3.16. The two
sidebands of the Mollow triplet emitted by the atoms beat
with its carrier, leading to a pseudoperiod in the time domain
of τc
 = 2π
/�M � 2 [see Eq. (27)], as observed on the
blue line. When z is increased within the first half-period
of the grating, the intensity decreases, as well as the Rabi

frequency. The pseudoperiod increases accordingly [yellow
dashed line in Fig. 2(b)]. Finally, when the intensity is close
to zero, no beating is observed anymore because the light is
scattered mostly elastically. The small inelastic component of

FIG. 2. (a) Amplitude modulation of the total laser electric field
when the polarization of the reflected beam is parallel to the inci-
dent one (γ = 0). The incoming and reflected beams with the same
polarization create an intensity grating in space with a spatial period
λ∗/2 = λ/[2 cos(θ0)]. (b) Contrast of the fringes of the light scattered
by a single atom, upon incidence of a plane wave with saturation
parameter s0 = 5, as a function of τc for the γ = 0 case, Eq. (30),
and for different atomic positions.
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FIG. 3. (a) Polarization modulation of the total laser electric field
when the polarization of the reflected beam is perpendicular to the
incident one (γ = π/4). The incoming and reflected beams with
orthogonal polarization create a polarization grating in space with
a spatial period λ∗/2 = λ/[2 cos(θ0 )]. (b) Contrast of the fringes of
the light scattered by a single atom, upon incidence of a plane wave
with saturation parameter s0 = 5, as a function of τc for the γ = π/4
case, Eq. (32), and for different atomic positions.

the spectrum is also less broadened, losing its characteristic
shape with three maxima for �l � 
/2. The temporal decay

is dominated by the terms e−
τc/2 and e−3
τc/4 as can be seen
in Eq. (27) [green line in Fig. 2(b)].

D. Scattered intensity for perpendicular polarization

The opposite situation is for γ = π/4. In this case, the
polarization direction εx is rotated by 90◦ into εy and vice
versa. The incident and reflected beams do not interfere any-
more, leading to a constant total laser electric field along z:
El (z) = √

2E0. However, the orthogonal polarizations create
a polarization grating, with the same spatial periodicity as the
intensity grating for the case γ = 0. As shown in Fig. 3(a),
the polarization of the total light seen by an atom varies
from linear at the direction (εx + εy)/

√
2 (that is, aligned with

the proper axis of the wave plate), to circular, to linear at
the orthogonal direction (thus aligned with the second axis
of the wave plate), and back, when the position z is scanned
within one grating period.

Accordingly, all parameters that depend on z through El (z)
become constant: s(z) ≡ s = 2s0, �l (z) ≡ �l , �M (z) ≡ �M ,
and ultimately g̃(1)

z (τc) ≡ g̃(1)(τc). In this situation, the total
intensity scattered by the atom I1,⊥ is

I1,⊥(k, r) = Ia
s

1 + s
[1 + g̃(1)(τc) cos (2kz cos θ0)

× cos (2kz cos θ )]. (31)

We still have an angular interference pattern with a contrast
that is given by

C1,⊥ = 2|g̃(1)(τc) cos(2kz cos θ0)|. (32)

This contrast is plotted for different atomic positions z in
Fig. 3(b) as a function of τc, for the same conditions as for
Fig. 2(b): s0 = 5 and θ � θ0 = 4.3◦. It is clear that all curves
are identical up to a prefactor, the cos(2kz cos θ0) term, as
expected from Eq. (32). For z = 0, the laser beam polarization
is linear, parallel to one of the axis of the half wave plate, as
shown in Fig. 3(a). Since the light scattered by an atom at
θ ∼ θ0 has the same polarization as the light seen by it, the
light scattered directly to the detector and the light scattered
and reflected have the same linear polarization. They will thus

(a) (b)

FIG. 4. (a) In the linear regime, the interference fringes for a single atom are the result of the coherent superposition of four different paths
for the scattered photons. They are identified by different colors and traces (continuous, short dashed, dashed, and dash-dotted). (b) The scheme
shown in (a) is formally equivalent to a double Mach-Zehnder interferometer, where the atom is represented by a beamsplitter in the regime
with s0 � 1. The reflection by the mirror in the presence of the wave plate can be represented by adding a time delay and a polarization rotation
to both lower arms, in a correlated way. When the two-level scatterer becomes saturated, this comparison fails. Nevertheless, by replacing the
central cube by the saturated atom, the only source of nonlinearities of the system, the analogy again becomes accurate.
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fully interfere on the detector, corresponding to maximum
contrast [blue line in Fig. 3(b)]. On the contrary, for z = λ∗/8,
the polarization of the total light seen by the atom is circular.
The light directly scattered to the detector keeps this same
circular polarization, while the scattered light reflected by
the mirror is orthogonally circularly polarized after passage
through the half wave plate. This leads to no interference
on the detector and thus null contrast [purple dotted line in
Fig. 3(b)].

Finally, in the general case corresponding to any value of
γ , both the amplitude and polarization of the electric field
that excites the atoms are periodically modulated, with the
same spatial period as for the particular cases discussed above,
and no simple interpretation is possible for the contrast of the
single atom.

E. Discussion of the single-atom case

As with other more common interferometer setups, the
MBS effect relies on the interference of light that went
through at least two different paths from the same source to
the same detection event. For a single atom, the light detected
at the far field is the superposition of the light scattered by it
and sent to two different directions: either to the detector, or
first to the mirror and then reflected back to the detector. But
the light that excites the atom is already a superposition of two
different paths: the light either impinges on the atom directly
or after reflection by the mirror. The MBS effect relies on both
interferences, which allows for the survival of the interference
fringes for all linear polarization rotations, even when the ro-
tation angle is equal to π/2. This double interference implies
that we have in total four different amplitudes, associated with
four different paths, that add up coherently to form the total
amplitude of the electric field of the scattered light at the
detector. These paths are shown in Fig. 4(a). Now we see that
path I contains no reflection, and so it does not pass through
the wave plate, while path IV crosses it twice: both paths thus
have the same polarization. On the other hand, paths II and
III contain only one reflection, and they have the same rotated
polarization. We will thus always have the paths interfering

at least two by two at the detector, preserving always some
interference effect for any polarization rotation.

The interpretation in terms of a double interference, one
for the incoming light and one for the scattered light, brings
another interesting image to the MBS effect: for a single atom
in the linear regime, this interferometric setup is equivalent to
a double Mach-Zehnder (MZ) interferometer, with correlated
delays and polarization shifts on both lower arms, where the
central nonpolarizing beamsplitter stands for the atom itself.
We represent this equivalent system in Fig. 4(b). For scattering
in the linear regime, the behavior of the atom is equivalent
to a nonpolarizing beamsplitter up to numerical factors that
depend only on its scattering differential cross section. For the
saturated regime, on the other hand, no simple linear device
can mimic the behavior of the scatterers; its response will be
a nonlinear function of the total input. Replacing the central
cube by a scatterer with its specific nonlinearity keeps the
double MZ interferometer still giving an accurate picture for
the single-scatterer behavior.

IV. EXTENDED CLOUDS OF RAMDOMLY
DISTRIBUTED SCATTERERS

We now consider the problem of the fluorescence profile
of a cloud of scatterers of dimensions much bigger than the
wavelength of light. Specifically, we suppose an atomic cloud
of N atoms, with an average Gaussian density profile ρ(r)
given by

ρ(r) = N

(2π )3/2szs2
r

e
− (x2+y2 )

2s2
r

− (z+h)2

2s2
z , (33)

where h is the distance between the center of the atomic
cloud and the virtual mirror, sr its transverse size, and sz its
longitudinal size. In order to calculate the total light intensity
scattered by the atomic cloud, we would need to consider the
total electric field emitted by all individual scatterers. But,
following [25], the averaging over all atomic positions for a
cloud with transverse and longitudinal sizes sr, sz � λ makes
the interference between the light scattered by different atoms
average out to zero. We thus end up with the total intensity
being equal to the incoherent sum of the intensities emitted by
each atom, which can be written in the limit of large N as

I (k) =
∫
R3

d3r ρ(r) I1(k, r)

= NIa√
2πsz

∫
dz e

− (z+h)2

2s2
z

s(z)

1 + s(z)

[
1 + g̃(1)

z (τc)
cos 2γ + cos (2kz cos θ0)

1 + cos 2γ cos (2kz cos θ0)
cos (2kz cos θ )

]
. (34)

Note that τc is considered to be independent on z. This is
justified for sz � L, in which case the distance between the
real mirror and each atom is almost the same and equal to L.
It is important to note that this averaging supposes that the
density of the atomic cloud satisfies ρ(r) � k3, and the opti-
cal density b0 in the z direction satisfies b0 � 1. Indeed, on
the one hand, keeping the optical density low is necessary for
neglecting the attenuation of the incoming laser light across
the cloud, ensuring that all atoms see an incoming light with

same electric field E0. On the other hand, keeping the density
and optical density low allows us to neglect any collective
effects on the light emission by the atomic cloud, which is
important since the MBS effect is a single-atom effect. This
sets a limit on the number of atoms that the experimentalist
can afford for a specific atomic geometry, stated above as a
function of the density and optical density of the atomic cloud.

The integral of Eq. (34) has to be calculated numerically.
We end up with angular fringes, as found in [25], and as
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FIG. 5. (a) Angular fringes created by an extended cloud of
randomly distributed scatterers, of transverse and longitudinal Gaus-
sian widths sr = sz = 500μm, an incoming laser beam of plane
wavefront with θ0 = 4.3◦, saturation parameter s0 = 5, and τc �
1/(

√
s0 
), for different wave plate proper axis angles γ with the

incoming polarization. (b) Contrast at the center of the fringe pattern
created by the extended cloud, for the same parameters as in (a),
except for τc, which is now varied from 0 to 6
. We also plot for
comparison g̃(1)(τc ) for a single atom, subject to a total saturation
parameter s = 2s0 created by the superposition of the incoming and
reflected excitation laser beams with perpendicular polarizations.

plotted in Fig. 5(a) for sr = sz = 500μm and θ0 = 4.3◦, and
for different positions of the wave plate. The incoming laser
field is a plane wave of saturation parameter s0 = 5, and we
choose a delay τc � 1/(

√
s0 
). Compared to the single-atom

case, the fringes now present a finite angular envelope. We
find numerically that the angular profile of the fringes depends
on the laser excitation parameters and on the wave plate po-
sition only through its contrast, having otherwise a shape that
depends only on the geometrical parameters of the system.
This shape can be obtained analytically for s0 � 1 [24], which

allows us to write

I (k) ∝ {1 + C(τc,�l , γ )

× e−2(θ0ksz )2(θ−θ0 )2
cos [2khθ0(θ − θ0)]}, (35)

with C(τc,�l , γ ) the fringe contrast, computed in the general
case through the numerical integration of Eq. (34). We see
that the fringe envelope is Gaussian, with a rms half-width
of sθ = 1/(2θ0ksz ), while the spatial period of the fringes is
given by � = π/(θ0kh).

For the case of parallel polarizations, the total intensity of
the cloud is denoted as I‖ and is given by [25]

I‖(k) = NIa√
2πsz

∫
dz e

− (z+h)2

2s2
z

s(z)

1 + s(z)

× [
1 + g̃(1)

z (τc) cos (2kz cos θ )
]
. (36)

The contrast of the fringes C‖(τc,�l ) ≡ C(τc,�l , γ = 0)
is found by numerically integrating the above equation and
is shown in red dot-dashed line in Fig. 5(b). As for all values
of γ except γ = π/4 (see discussion below), this contrast is
a complicated convolution of all correlation functions g̃(1)

z (τc)
for each position z on the standing wave made by the inter-
ference of the incoming and reflected laser fields and has no
analytical expression to our knowledge. As another example,
we also plot in Fig. 5(b) the case of γ = π/12 in green dotted
line, for which amplitude and polarization modulations must
be taken into account.

For the case of mutually orthogonal polarization, γ = π/4,
the total intensity of the cloud is denoted as I⊥ and is equal to
(see the Appendix for the calculations)

I⊥(k) = NIa
s

1 + s

[
1 + g̃(1)(τc)

∫
dz

e
− (z+h)2

2s2
z√

2πsz

× cos (2kz cos θ0) cos (2kz cos θ )

]
, (37)

= NIa
s

1 + s
{1 + g̃(1)(τc)

×e−2(θ0ksz )2(θ−θ0 )2
cos [2khθ0(θ − θ0)]}. (38)

For this particular case, the contrast at the center of the fringe
pattern, around θ = θ0, is simply given by

C⊥ = g̃(1)(τc), (39)

thus directly equal to the first-order temporal correlation func-
tion of the light emitted by an atom subjected to a Rabi
frequency � = √

2dE0/h̄, or equivalently, to a saturation pa-
rameter s = 2�2/
2 = 4d2E2

0 /(h̄
)2 = 2s0.
The contrast obtained for perpendicular polarizations cor-

responds to the blue dashed line in Fig. 5(b), found by a
numerical integration of Eq. (34). As expected from Eq. (39),
this curve is perfectly superimposed to the single-atom case
g̃(1)(τc). In this configuration, all atoms are subject to the same
total saturation parameter s = 2s0, created by the superposi-
tion of the incoming and reflected excitation laser beams with
mutual orthogonal polarizations.
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V. DISCUSSION AND CONCLUSION

In conclusion, we have shown that the MBS interferometer
setup in the saturated regime has a contrast that depends on
the linear polarization of the light reflected back to the atoms
direction, when compared to the polarization of the light
impinging on the mirror. The amplitude of the total electric
field of the scattered light is the coherent superposition of
four probability amplitudes, corresponding to four different
scattering paths as shown in Fig. 4(a). Due to that, the fringes
contrast survives for any polarization rotation of the reflected
light, even in the case of mutual orthogonal polarizations. In
this last case, the setup allows one to measure the first-order
temporal autocorrelation function g̃(1)(τ ) of the light scattered
by the scatterers in the rotating referential frame of the incom-
ing laser light.

The feasibility of this measurement has been shown in
a previous implementation of the interferometric setup [24];
at that point, the saturation parameter and the distance to
the real mirror were not enough for probing the effects of
the saturated spectrum of the atoms, and no wave plate was
implemented. The main experimental constraints to be re-
spected for the MBS signal to appear are the limits on the
density and optical density of the sample in the detection
direction, as discussed in Sec. IV. Another important aspect is
that the interferometer signal of Eq. (34) is composed solely
of the scattered light, and the experimentalist must the able
to separate it from the incoming light reflected close to the
detection direction. The MBS interferometer signal appears
for θ ∼ θ0, which configures a cone of directions making
an angle ∼θ0 with respect to the normal of the mirror. At
one point of this cone, we have the incoming reflected light,
with wave vector k′

0 = k(0,− sin θ0,− cos θ0). So the best
direction for the detection is around the direction given by the
wave vector k = k(0, sin θ0,− cos θ0) = −k0, the direction
opposite to that of the incoming beam, which is separated
from the direction of the reflected incoming beam by 2θ0 (see
the experimental arrangement in [24] for an implementation
of this configuration). We also note that the MBS setup was
recently applied to probe the coherence of the light scattered
by a hot vapor [28].

Although feasible and robust, the implementation and
alignment of the MBS setup demand some work. It may thus

not configure the best, or easiest, method to obtain g(1)(τ ) for
any experimental configuration. However, it does present ad-
vantages that can be useful for specific experimental contexts.
An advantage of the MBS technique over other interferometer
setups also used to obtain g(1)(τ ), such as a MZ or Michelson
interferometer, is the much less drastic requirement on the
stability of the scanning mirror position: while one needs
subwavelength steps and precision in a Michelson or MZ
setup, the MBS setup requires steps in the order of a few
hundredths of the smallest value of both parameters c/�l

and c/
, which is typically centimeter-sized for atoms, or
hundreds of micrometers for quantum dots. On the other hand,
it does not need fast photodetectors and electronics, as is
the case for measurements of g(1)(τ ) based on heterodyne
techniques, such as the one implemented in Refs. [19,21] with
correlations between time-resolved single-photon detection
events. When considered in a broader perspective, the MBS
setup was already used to evidence the coherence of the light
emitted by the atoms in the saturated regime [24] and by atoms
in a hot vapor [28], where it allowed identifying a regime
where the scattered light presents coherences in spite of the
Doppler broadening of the transition. The results of this article
extend the capabilities of this setup, showing, for instance,
that for the implementations above, simply adding a half wave
plate will allow for the first-order correlations of light to be
obtained without extra effort.
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APPENDIX: INTEGRAL OF I1,⊥

The integral of Eq. (37) is solved as follows:

∫ ∞

−∞
dz

e
− (z+h)2

2s2
z√

2πsz

cos (2kz cos θ0) cos (2kz cos θ ) (A1)

=
∫ ∞

−∞
dz

e
− (z+h)2

2s2
z√

2πsz

(e2ikz cos θ0 + e−2ikz cos θ0 )

2

(e2ikz cos θ + e−2ikz cos θ )

2
(A2)

=
∫ ∞

−∞
dz

e
− (z+h)2

2s2
z

2
√

2πsz

(
e2ikz(cos θ0+cos θ0 ) + c.c. + e2ikz(cos θ−cos θ0 ) + c.c.

)
(A3)

=
{

e−2k2s2
z (cos θ+cos θ0 )2

2
cos [2kh(cos θ + cos θ0)] + e−2k2s2

z (cos θ−cos θ0 )2

2
cos [2kh(cos θ − cos θ0)]

}
. (A4)

053716-9



P. G. S. DIAS et al. PHYSICAL REVIEW A 104, 053716 (2021)

The argument of the first exponential of Eq. (A4) has a
modulus much bigger than one for any value of θ , given typ-
ical experimental values (θ0 � 1◦, sz � 1 mm � λ), and this
exponential can be neglected to a very good approximation;
moreover, the cosine that multiplies it varies too fast with θ for
it to be detected, and it averages out to zero within the diffrac-
tion limit of the experimental detection setup. On the other
hand, the second term induces an intensity modulation which

can be experimentally detected for θ ∼ θ0. For θ, θ0 � 1,
θ ∼ θ0, we write cos θ − cos θ0 � (θ2 − θ2

0 )/2 � θ0(θ − θ0).
Replacing this in Eq. (A4), one gets

∫ ∞

−∞
dz

e
− (z+h)2

2s2
z√

2πsz

cos (2kz cos θ0) cos (2kz cos θ )

� e−2(θ0ksz )2(θ−θ0 )2
cos[2khθ0(θ − θ0)]. (A5)
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